MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 42 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	Mark Scheme: Teachers' version	,					
		GCE A/AS LEVEL – October/November 2009	42					
1	both but h <i>or</i> HI	tes become less soluble down the group lattice energy and hydration (are involved) ydration energy decreases more than lattice energy E becomes less than LE <i>or</i> HE decreases whereas LE is a to cationic radius increasing)	almost constant	[1] [1] [1] [3]				
	(b) (i) r	$n(CO) = pV/RT = 1.01 \times 10^5 \times 140 \times 10^{-3}/(8.31 \times 450) =$	3.78					
	(or = 140 × (273/450) / 22.4 = 3.79						
	á	allow= 140 × (298/450) / 24.0 = 3.86		[1]				
	• •	n(BaSO ₄) = n(CO)/4 = 0.945 moles (<i>or</i> 0.9475) f RTP used answer is 0.966		[1]				
	· · ·	Λ _r = 233,		[1]				
	(so 0.945 mol = 0.945 × 233 = 220g \Rightarrow 100 × 220/250 = i or 0.9475 mol \Rightarrow 220.8g \Rightarrow 88(.3)%)	88(.07)%	[1]				
	I	f RTP used answer is 90(.0)%		[4]				
	(c) (i) f	rom data booklet, 1 st IE = 502; 2 nd IE = 966; sum = 1468 k	⟨J mol ^{−1}					
	- 	-460 = 1468 + 180 + 279 - 200 + 640 + LE -460 = 2367 + LE $E = -2827 \text{ kJ mol}^{-1}$		[3]				
	(-1 for each error)		Ľ				

(ii) LE of BaS should be smaller than that of BaO, since S^{2-} is bigger than O^{2-} . [1]

[4]

[Total: 11]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper					
		GCE A/AS LEVEL – October/November 2009	9701	42					
2	(a) ethylamine > NH_3 , but phenylamine < NH_3								
	in ethylamine, the alkyl group donates electrons to the N, making lone pair more available								
	in pheny	less available	[1] [3]						

(b)

halide	observation when AgNO₃(aq) is added	observation when dilute NH₃(aq) is added	observation when concentrated NH₃(aq) is added	
chloride	white ppt	dissolves	dissolves	[
bromide	cream ppt	no reaction / slightly dissolves	dissolves	[
iodide	(pale) yellow ppt	no reaction	no reaction	[
			ł	ן נ

- (c) (i) $[Ag^+(aq)] = \sqrt{K_{sp}} = \sqrt{(5 \times 10^{-13})} = 7.1 (7.07) \times 10^{-7} \text{ mol } dm^{-3}$ [1]
 - (ii) AgBr will be less soluble in KBr, due to common ion effect or equilibrium is shifted to the left / or by Le Chatelier's principle [1]
 [2]
 - (d) (i) $K_c = [Ag(RNH_2)_2^+]/[Ag^+][RNH_2]^2$ [1] units are mol⁻² dm⁶ [1]
 - (ii) assume that most of the Ag⁺(aq) has gone to the complex, then $[Ag^{+}(aq)] = 7.1 \times 10^{-7}$ $[Ag(NH_3)_2^{+}] = 0.1$

and
$$[NH_3] = \sqrt{\{[Ag(NH_3)_2^+]/(K_c[Ag^+])\}} = \sqrt{\{0.1/(1.7 \times 10^7 \times 7.1 \times 10^{-7})\}}$$
 [1]
= **0.091** mol dm⁻³ [1]

(iii) When $R = C_2H_5$, K_c is likely to be greater, since the ethyl group will cause the lone pair on N to be more available / nucleophilic / increases basicity [1]

[5]

[Total: 13]

Page 4	Ν	lark Scheme:	Teachers' ver	rsion	Syllabus	Paper
	GCE A	/AS LEVEL –	October/Nove	mber 2009	9701	42
3 (a) Any two	var abi forr inc	h(-ish) density iable oxidation lity to form cor mation of colou omplete d sub h m.p. / b.p.	states nplexes ured compound	IS		[1] + [1] [2]
(b) equ: Mn0	$D_4^- + 8H^+$	+ 5Fe ²⁺	\rightarrow Mn ²⁺ + 5F	⁻ e ³⁺ + 4H ₂ O		[1]
method:	Add an e Titrate ur End poin	xcess of (dil) H ntil end point is t is first perma	H₂SO₄ reached and r nent pink coloι	note volume use ir		lask
	Repeat ti	tration & take	average of con	sistent reading		points [3] [4]
(c) (i) 2 Mr	nO ₄ ⁻ + 5 \$	SO ₂ + 2 H ₂ O	\rightarrow 2 Mn ²⁺ + \$	5 SO ₄ ²⁻ + 4 H ⁺		[2]
oxidation numbers:	+7	+4	+2	+6		[1]
(ii) 1 Cr	² ₂ O ₇ ²⁻ + 6	$NO_2 + 2 H^+$	\rightarrow 2 Cr ³⁺ + 6	NO ₃ ⁻ + 1 H ₂ O		[2]
oxidation numbers:	+6	+4	+3	+5		[1]
([2] r	marks for e	each equation:		ing of redox sp alancing: i.e. H ₂		[6]
Fe ³⁺ oxid Fe ²⁺ redu	lised I ⁻ (an	eous (catalyst) d is reduced to ⁻ (and is oxidis ng this	o Fe ²⁺) sed to Fe ³⁺)		any two poi	nts [2] [2] [Total: 14]

[Total: 14]

	Pa	ige 5			Feachers' version		Syllabus	Paper					
			G	CE A/AS LEVEL – C	ctober/November 2	2009	9701	42					
4	(a)	The energy required to break 1 mole of bonds in the gas phase											
	(b)	purple is	HCI: nothing happens AND HI: purple fumes (at a low temperature) purple is iodine formed (<i>or</i> in an equation: $2HI \longrightarrow H_2 + I_2$) H-X bond energy becomes smaller/weaker down the group										
	(c)	data needed: F-F = 158 CI-CI = 244 6 E(CI-F) -328 = 3×158 + 244 E(CI-F) = +174 (kJ mol ⁻¹)											
5	(a)												
		compou	ind	all carbon atoms can be coplanar	not all carbon atoms coplanar								
		Α		\checkmark									
		В			~								
		С		✓									
		D		\checkmark									
		E		\checkmark									
					(4 correc	ct: [2], 3	all 5 correct correct: [1]. <3 c	[3] orrect: [0]) [3]					
	(b)		reaction I: $Cl_2 + AlCl_3 / FeCl_3 / Fe / or bromides of Al or Fereaction II: Cl_2 + heat / light / uv / hf$										

(c) (i) H is $C_6H_5CH_2CI$ [1](ii) reaction III: KMnO₄ + heat (+ OH⁻)
reaction V: NaOH in water + heat
reaction VI: conc H₂SO₄ + heat[1](iii) reaction III: oxidation
reaction VI: bydrolycia expueleophilic substitution[1]

[Total: 11]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	42
6	(a)	P is C⊢ J is C⊢	₃ CO ₂ H		[7] [7]
	(b)		 KCN, heat NOT H⁺ OR HCN aq negates SOCl₂ or PCl₅ or PCl₃ BUT aq negates H₂ + Ni or LiAIH₄ or NaBH₄ NOT Sn + HCI 		[1] [1] [1] [3]
	(c)		V: reduction /I: nucleophilic substitution <i>or</i> condensation reaction		[1] [1] [2]
	(d)	(i) amic	e		[1]
		(ii) amir	e		[1]
					[2]
					[Total: 14]
7	(a)	Primary:	Covalent bond (ignore amide, peptide etc.) Diagram showing peptide bond: (-CHR-)CONH(-	-CHR-)	[1] [1]
		Seconda	ry: Hydrogen bonds (NOT between side chains" Diagram showing N-H···O=C		[1] [1]
		Tertiary:	 Two of the following: hydrogen bonds (diagram must show H-boo or β-pleated sheet – e.g. ser-ser) electrostatic/ionic attraction, Van der Waals'/hydrophobic forces/bonds, 	nds <i>other</i> than th	nose in α-helix
			(covalent) disulphide (links/bridges)		[1] + [1]
			Suitable diagram of one of the above (for disulphide: S-S not S=S or SH-SH)		[1]
					[max 6]
	(b)	Interactio	binds to the active site of the enzyme n with site causes a specific bond to be weakened, (w	,	[1]
		Or chang	e in shape weakens bond(s) / lowers activation energ	у	[1] [2]
	(c)		petitive inhibition er reaches <i>V_{max}</i>		[1] [1] [2]
					[Total: 10]

	Page 7		Mark Scheme: Teachers' version Syllabus Pa								
			GCE A/AS LEVEL – October/November 2009	9701	42						
8 (a	a) Ra) Ratio of the concentrations of a solute / distribution of solute [1] in two immiscible liquids									
(1	(b) $K_c = \frac{\text{[pesticide in hexane]}}{\text{[pesticide in water]}}$ hence 8.0 = $\frac{\text{[pesticide in hexane]}}{0.0050 - \text{[pesticide in hexane]}}$										
	Therefore [pesticide in hexane] $x = 0.040 - 8x$ Hence x = 0.0044(g)										
(4	c) (i)	Ratio	o would be 3 : 1		[1]						
	 (ii) Each chlorine at could be ³⁵Cl or ³⁷Cl Only way of getting M+4 is for both chlorines to be ³⁷Cl (1 in 9 chance) Ratio of peaks M M+2 M+4 										
			9 6 1		[1] [3]						
(•	d) (i)	Acce	ept dioxins and furans (without specifying)		[1]						
	(ii)	PCB	Bs (but don't penalise non-specified dioxins and furans))	[1]						
	(iii)		w : pollution control / environmental legislation / remove closed down (owtte)	al of dioxins and	furans / [1]						
	(iv)	Five			[1] [4]						
	[Total										

	Page 8				Mark Sch	eme: Teac	chers' ve	ersion	Syllabus	Paper	
				GCE /	A/AS LEV	EL – Octol	ber/Nov	ember 2009	9701	42	
9	(a)	Ler	ngth o 3	of DNA	nanos	ohere diam 1	neter	cell diameter 2			
		Bot	h mai	rks for co	rect sequ	ence, [1] fo	or cell sm	aller than DNA			[2]
	(b)	b) (i) Gaps in structure of shaft much smaller, hence less prone to fracture / more flexil							e flexible	[1]	
		(ii)	(ii) Composites and carbon nanotubes less dense than metal (of comparabl						(of comparable	strength)	[1] [2]
	(c)					gy is longe particles allo			, but reflect infra	red energy	[1] [1] [2]
	(d)	(i)	Resi	stance to	corrosion	/ reaction					[1]
		(ii) Ability to kill b			acteria / p	revent bact	teria mul	tiplying			[1]
		(iii)	Very	much lar	ger surfac	ce area mea	ans they	dissolve more	readily		[1] [3]
						[Tota	i: 9]				